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Resul ts  of an exper imenta l  investigation of the r e v e r s e  flow zone n e a r  the axis  of a s u p e r -  
sonic underexpanded je t  and the hel ical  gas  jet  in the di f fusor  por t ion of a nozzle  a r e  e luc i -  
dated. 

The gas  flow in twisted supersonic  jets  and s t r e a m s  has  a complex th ree -d imens iona l  cha rac t e r .  I f  
the p r e s e n c e  of an approx imate  s imi l a r i t y  [1, 2] can hence be t r a ced  in weakly  rotat ing je ts  and s t r e a m s ,  
then there  is no s e l f - s i m i l a r i t y  in s t rong rotat ion,  and the flow configuration even changes quali tat ively.  
P r i m a r i l y  this r e f e r s  to the zone n e a r  the axis ,  where  the t rans la t ion  g a s  motion under the effect  of a l a rge  
posi t ive  longitudinal p r e s s u r e  grad ien t  is dece le ra ted  in the twisted je t  and a domain of r e v e r s e  axial  flows 
can be fo rmed  nea r  the axis .  

Up to now, no investigation of the r e v e r s e  flow zones in s t rongly  rotat ing twisted supersonic  jets  and 
s t r e a m s  has  been undertaken despi te  the p rac t i ca l  impor tance  of information on the configuration of such 
flows [3, 4]. This p a p e r  contains some resu l t s  of such an invest igation.  

1. An exper imen ta l  study of rotat ing supersonic  gas  jets  escaping  f rom a nozzle without a diffusor  
sect ion has  been c a r r i e d  out. I t  tu rns  out that  [1] fo r  weak  rotat ion and suff icient ly high p r e s s u r e  of the 
dece le ra t ed  s t r e a m ,  such a je t  c o n s e r v e s  an approx imate  s e l f - s im i l a r i t y .  The shock s t ruc tu re  there in  
is hence analogous to a t r ip le  Mach configuration which holds for  the flow of an untwisted underexpanded 
jet .  The influence of rotat ion only r e su l t s  in d i sp lacement  of the cent ra l  disklike shock c lose r  to the nozzle,  
where  this d i sp lacement  can be desc r ibed ,  with sa t i s f ac to ry  accuracy ,  by quantitative dependences.  
Fu r the r  invest igat ion shows,  however ,  that  the nature  of the shock interact ion is modified qual i tat ively as  
the degree  of rota t ion in the jet  i nc rea se s  at low stagnation p r e s s u r e :  s e l f - s i m i l a r i t y  of the flow is absent  
and the diskl ike shock degenera te s ,  being rep laced  by a s y s t e m  of cu rv i l inea r  shocks.  

As an i l lus t ra t ion,  a Toep le r  photograph of an underexpanded a i r  jet  escaping  into the a t m o s p h e r e  f rom 
a nozzle  without a d i f fusor  sect ion with a d = 5 m m  cr i t i ca l  sect ion d i a m e t e r  at  a poo = 5 a im stagnation 
p r e s s u r e  and a deg ree  of rotat ion a .  = v* /Vma  x = 0.205 (v~ is the rotat ional  veloci ty  of an ideal gas  at the 
nozzle  wall) .  Attention is tu rned  to the ~nalogy between the p ic ture  p re sen ted  and the p ic ture  of shock 

Fig. 1. P ic tu re  of shock 
interact ion in an under -  
expanded s t rongly  rota t ing 
jet .  
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Fig. 2. P ic ture  of the p lasma fi lament 
scinti l lat ion in an underexpanded ro ta t -  
ing jet .  

Fig. 3. Sweep photograph of the p lasma front 
in a jet. 

format ion during the collision of a supersonic  s t r eam 
and an opposing ax i symmet r ic  jet  re la t ive  to a small  
d iameter .  In both cases  the re  is no normal  shock, 
and it is replaced by a conical shock. The cha rac t e r  
of the flow observed in a s t rongly twisted supersonic  
expanding je t  could probably be explained by the fo r -  
mation of r e v e r s e  cu r ren t  zones near  the flow axis at 
some distance f rom the nozzle.  Then the decelera t ion  
of the main jet  in the opposing s t r eam of this zone in- 
deed specif ies the appearance of the conical p r e s s u r e  
shock. 

A se r i e s  of tes t s  using the method of photograph- 
ic tacking of a luminous plasma bunch moving in the 
je t  was ca r r i ed  out to ver i fy  such a hypothesis .  A 
plasma cloud was produced in the gas by a sparkover  
between d i scharger  spikes and was entrained by the 

moving s t ream.  Since th6 veloci t ies  of p lasma removal  in the supersonic  je t  a re  high, the recording of the 
displacement  of the ionized gas f ront  is accomplished by using the SFR high-speed photographic r e c o r d e r  
o rd inar i ly  used to investigate detonation p roce s se s  [5]. 

A pic ture  of the scintil lation of the ionized plasma fi lament in the rotat ing jet ,  obtained in the f r a m e -  
by - f r ame  survey  mode under escape conditions analogous to those in Fig. 1, is p resen ted  in Fig. 2. The 
spiral  motion s t reaml ines  a re  c lea r ly  seen,  according to whose slope the magnitude of the re la t ive  ro ta t ion-  
al velocity v~0/v z of the gas near  the nozzle can be determined.  As has been assumed,  there  is a r e v e r s e  
flow domain with its nar row par t  turned ups t ream.  (The point A is the forward  stagnation point of the jet  in 
the opposing s t r eam of the r e v e r s e  flow zone, and the points B and C are  the d i scharger  spikes ex t rac ted  
f rom the nozzle section DE. ) 

To obtain more  complete information about the re la t ive ly  fine s t ruc tu re  of the backward flow zone, 
SFR photographs in the sweep mode w e r e  used. (Since the ionized gas moving with the s t r eam scint i l lates  
slightly at a re la t ive ly  high magnification, the photography was accomplished with a la rge  aper ture  input 
objective 1 :2 .8  without using a s l i t . )  In this case the moving m i r r o r  of the ins t rument ,  whose axis of 
rotat ion agreed with the je t  axis,  turned the image of the moving plasma front  along a fixed photographic 
film. If  the s t r eam itself  hence has the veloci ty component v z perpendicular  to the sweep direct ion (across  
the film), and the veloci ty component v r along the fi lm, then a r eco rd  of the ionized gas front  in the form 
of an oblique line is obtained as a resu l t  of adding the gas and sweep veloci t ies .  By knowing the l inear  
sweep velocity,  the magnification of the image K, and measur ing the slope tan 3 o f t h e t r a c k  along the photo- 
graph,  the magnitude of the axial and radial  s t r e am velocity components can be found 

v ~ -  tg~ ( I + K  v~_p) (1) 
ZJ$ K - -  

(the sign • in the formula depends on which half of the ax i symmet r i c  je t  is examined). 

An i l lustrat ion of the sweep photograph of p lasma bunch motion in an underexpanded rotating jet  with 
the p a r a m e t e r s  d ,  = 8 mm, p~ = 6 atm, a ,  = 0.175 is given in Fig. 3. The l e t t e r  notation he re  is the same 
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Fig. 4. Reverse  cur rents  zone 
in the diffuser par t  of a nozzle 
during rotating gas flow. 

as in Figs. 1, 2. F rom the f irst ,  the presence  of a r eve r se  flow zone and the abrupt expansion of the jet 
(the points H, F) somewhat downstream from the forward s t ream stagnation point A are  seen. By using (1), 
the components v z, v r on the jet boundary can be determined (the plus sign must be taken in the formula 
for  the branch BF and the minus sign for  CtD. Thus, v s = 375 m / s e c ,  K = 1.5 corresponds  to the picture 
shown in Fig. 3, f rom which we obtain v r = 50 m / s e c ,  Vz = 200 m / s e c  near  the points H and F. Attention 
is turned to the inhomogeneous "ver tebra l"  s t ructure  of the recording in the r eve r se  currents  zone. This 
pe rmi t s  making an important  deduction about the nature of the configuration of the zone itself: it consists  
of a number of s emic i r cu l a r  vor t ices  imbedded in each other.  

The magnitude of the velocity of the opposing motion of the gas near  the axis of an underexpanded 
s t rongly rotating jet can be est imated by means of the sweep photograph. Thus, we obtain the quantity 
~100 m / s e c  f rom the maximum slope of the r eve r se  s t reamlines  in Fig. 3. A somewhat lower value of 
the r eve r s e  cur ren ts  veloci ty is obtained if another est imate is used. In our experiments ,  the recombina-  
tion t ime, or  more  accurate ly ,  the t ime of ionized gas scintillation turned out to be ~100#sec .  By mea-  
sur ing the magnitude of the r eve r se  flow t rack  and assuming that the scintillation of the t rack  was cut off 
af ter  the mentioned t ime had elapsed, we obtain the velocity ~80 m / s e c .  

The t ime when the leading point of the reverse  cur rent  zone of a supersonic jet enters  the cr i t ical  
nozzle section is important  for the pract ical  use of twisted s t reams .  This t ime can be determined by using 
the resul ts  in [6] about the distribution of the flow pa rame te r s  along the radius of the cri t ical  nozzle s ec -  
tion in a spira l  isentropic s t r eam 

vz Jo (m~) ]1 (mS) 

Vma~ Sl (m) J1 (m) 

Here J0(x) and J~(x) are  Bessel  functions, ~ = r / R ,  and m is a known function of a , .  For  small a ,  (to a ,  
= 0.2) the following relationship holds 

m =2cr lfl~q- 1)i(? --1): (2) 

If  it is assumed that the r eve r se  cur ren t  penetrates the cr i t ical  section of a nozzle without a diffuser par t  
when the p r e s s u r e  at the nozzle section on the jet axis is commensura te  with the p res su re  Ph of the am-  
bient medium, then we will have 

Y 

Ph = P~ ~(m)-  " (3) 

The dependences (2) and (3) determine the connection between the p re s su re  in the tank p~ and the degree of 
rotation a ,  for  the t ime of counterflow penetration into a nozzle without an expanding part .  
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Fig. 5. Photographic  scanning of p l a s m a  motion in di f fusor  and 
l ine of r e v e r s e  cur ren t .  

2. A r e v e r s e  cu r r en t s  zone can be fo rmed  in the flow of a rotat ing gas  s t r e a m  in the supersonic  d i f -  
fusor  pa r t  of a nozzle  n e a r  the axis ,  just  as in the case  of a f r ee  twisted jet .  The origin of such a zone 
causes  the appearance  of a complex  pic ture  of shock interact ion in the nozzle,  which exe r t s  influence on 
s t r e a m  separa t ion  f rom the wal ls  and on the nozzle  th rus t  cha r ac t e r i s t i c s .  

A photograph of a s e r i e s  of p l a sma  f i laments  exci ted by sequential  spa rk  d i scharges  in the supersonic  
pa r t  of a t r a n s p a r e n t  conical nozzle with d.  = 6.7 m m  and 5 = 12 ~ hal f -angle  is p resen ted  in Fig. 4 (degree 
of s t r e a m  rotat ion ~ .  = 0.16, tank p r e s s u r e  Poo = 6 arm,  d i s c h a r g e r  spikes  BC located between the cr i t ica l  
and exit  sect ions ,  1) nozzle  axis ,  2) inner  wall  of the conical nozzle,  and 3) outer  wall).  I t  is seen that  the 
m a j o r  port ion of the nozzle  c r o s s - s e c t i o n  is occupied by the r e v e r s e  flow domain which pene t ra tes  deeply 
agains t  the main s t r e a m  but does not r each  the cr i t ica l  sect ion.  The su rvey  of such a scint i l lat ion p ic ture  
of ionized gas in tervals  by using the rotat ing SFR m i r r o r  p e r m i t s  construct ion of the shape of the r e v e r s e  
cu r r en t s  zone to some approximat ion ,  and es t imat ion  of the magnitude of the veloci t ies  therein .  The fo rm 
of such a sweep photograph and the method of p rocess ing  it in o r d e r  to cons t ruc t  the r e v e r s e  flow s t r e a m -  
l ines a r e  i l lus t ra ted  in Fig. 5 (4 is one of the d i s c h a r g e r  spikes ,  the remaining  notation is as in Fig.  4). 

. is the degree  of gas  rotation; 
p~ is the stagnation s t r e a m  p r e s s u r e ;  
d ,  is  the nozzle  d i ame te r .  
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